This is still not an accurate comparison. I'm not a Tesla fanboy but of all of the major players in the non-diy game (Enphase, Franklin, Tesla, Sol-Ark) they provide the best value for money, and are impressive pieces of equipment.
The EG4 18k has 11.5 kw backfeed capability, with a rather pathetic 65ish amp in-rush. Obviously 18kw usable solar capacity(they technically let you land up to 21kw, but only 18 is usable).
The Powerwall system you outlined can take 60kw of usable solar input, has 34kw standing backfeed capability, and a whopping 555 amp in-rush (not a typo, it's 185 amps per unit).
None of those things matter when your solar array is 4.5 kW and you have a standard 150A/200A grid in....
Like I said, they basically are not sold to scale like a normal household uses electricity.
EDIT: What the heck is in-rush and backfeed? Are you talking about AC input to charge the batteries? The 18k is 50A @ 240VAC (12kW) fyi. Also, why does the charge rate even matter there? For the AC output its also 12 kW...the family is average 48 kWh days, which is 2 kW hourly average...
Inrush is exactly what it says it is, it's inrush current. When you have a sudden surge on something, that's inrush. Lots of appliances in your home have a large inrush, much larger than the breaker they're on. Inrush happens faster than a breaker trips, which doesn't matter when you're on the grid and the inrush is lower than your mainbreaker, it matters when you have an inverter in the way with a passthrough limit and an inrush limit. Typical central HVAC units have LRA over 100 amps.
If we're talking about 'doesn't even matter with a 4kw array' well, hell, how the hell you gonna charge ~40kwh of battery with solar array that nominally produces 20kwh a day on its best day, assuming all conditions are perfect?
Backfeed is what the inverter can push out from the battery to the home. It's the size of the tube coming from the gallons of water reservoir. EG4 18k has a tiny tube, no matter how much battery you put on it. Like emptying a 50 gallon drum with a drinking straw(and with the 4kw array, filling it with a 12 oz cup).
> Inrush is exactly what it says it is, it's inrush current
These are not terms commonly used in the industry, thanks for the clarification.
> Lots of appliances in your home have a large inrush, much larger than the breaker they're on.
And inverters are designed to compensate for short term surges too fyi. The 18k provides 65A for a few seconds as an example.
> well, hell, how the hell you gonna charge ~40kwh of battery with solar array that nominally produces 20kwh a day on its best day, assuming all conditions are perfect?
Because you can't and don't need to...you should be asking the author of the original post, because they do what pretty much every other grid tied system which is that you pass through the power from the grid.
> Backfeed is what the inverter can push out from the battery to the home.
> It's the size of the tube coming from the gallons of water reservoir. EG4 18k has a tiny tube, no matter how much battery you put on it.
1. The 18k can push 50A on each leg and most residential are sized at 150a or 200A, which are ridiculously oversized, so at most, even with two EVs and a 4 ton AC running in Texas, I max out at 150A. I can put 3 18k's in parallel if I really want to and its STILL cheaper than a powerwall battery/inverter combo.
2. There is no reason to have a "pipe" so large that it only is used for less than 5% of the overall runtime. This is why the powerwall setup doesnt make any sense.
>These are not terms commonly used in the industry, thanks for the clarification.
It's such an industry term that it's literally a named feature on multimeters.
>The 18k provides 65A for a few seconds as an example.
Yes, you'll see I gave you that spec in the opening comment. It's not a good spec for a whole home hybrid inverter.
>the 18k can push 50A on each leg and most residential are sized at 150a or 200A
That's not how you read a spec sheet for 240v device. A home service is 200 amp, at 240v. That's 48kw potential. 12k is 12k regardless of whether that's (120v * 50a) + (120v * 50a) or (240v * 50a). The legs aren't cumulative. You're implying the standing load capacity is somehow higher than its inrush capacity. It would need to be a 24kw (on the ac side, all of the janky chinese rebrand inverters all list their DC input to try to make themselves seem bigger) inverter to do what you're implying.
(50a * 120v) + (50a * 120v) = 12kw
A small home with a smaller 150 amp service is (150a * 240v), 36kw.
Edit: screw it, I'll address this as well -
>There is no reason to have a "pipe" so large that it only is used for less than 5% of the overall runtime. This is why the powerwall setup doesnt make any sense.
There sure is! The whole point is to offset usage. 50 amp standing load capacity means you can only ever offset 50 amps of usage at one time. Sure, most homes don't hold anything higher than that for long but I've seen plenty of homes hold over 20kw for a bit if they have pool pumps, well pumps, pool heaters, or any number of things going on. Any time the home draws more than 12kw instantaneously you'd be getting charged peak rates, which could be avoided with a larger standing load capacity. In addition, if you're in a municipality with a 'demand' rate you could enter in to a different billing rate any time you go over a certain amperage, meaning that ability to offset more of that in that instance, even just for an inrush, could make an even larger difference on your bill.
Look man, I run an $800 chinese inverter, and my batteries are MuRatas I harvested from decommissioned Sonnen cabinets that I rewired with chinese BMSes. The Powerwall 3 is a really good product and the pricing is great compared to comparable non-diy consumer grade products. The EG4 is not a good comparison point because it has nowhere near the spec or capability. You would need 3 EG4 18ks to have the inrush capability of a single Powerwall 3. Battery capacity (volume) is not the sole determining factor in value. This isn't even relevant but just as an aside, the EG4 isn't even a good value for the DIY scene, and has functionally the same support as rebranded drop shipped Chinese inverters.
I'd love to know why you'd choose an EG4 18k (which is actually a 12k AC inverter, with a questionable track record on support and warranty) over a Sol-Ark 15k (which is actually a 15K AC inverter, and has tech support that responds) now that Sol-Ark dropped the price on 15ks to sub $5,000 MSRP.
I'd rather land wires in a Sol-Ark, it has better support, it has a higher AC output, it has a higher battery charge rate, and it's the same price.
Yes, 48 amps at 240 is 11.5kw. Each Powerwall 3 is 11.5kw(edit: not to be confused with its capacity which is 13.5 kwh, one is a power output, one is a storage capacity. Just so you don't go thinking that's some amazing mixup between the comments). The original comment is all within your framework of 3 Powerwalls vs one EG4 18K with 3 batteries. That's 12kw AC for the EG4, and 34.5kw on 3 Powerwalls. I've never stated a single powerwall has more output than that(hell I even rounded down on the output of the 3 powerwalls to 34kw), only that they have a very impressive inrush and solar capacity. The incongruity of the comparison between the two systems is the entire origin of this discussion. Do you even remember what you posted and I responded to? You don't know how to use an amp clamp and don't understand the American split phase power grid. Stop consulting ChatGPT for 'gotchas' and actually read what you're writing.
Just to be perfectly clear on your continued misunderstanding - each powerwall is also an inverter, it has its own AC power output. That stacks. The batteries strapped to the EG4 are all limited to going through the EG4. That means no increased output for adding more batteries. No stack.
With 3 EG4s in the comparison you would have a similar standing load capability(36kw claimed), however you'd still only have roughly 1/3rd the inrush capability(190 amps).
Honestly, I thought I started this conversation nicely enough and went out of my way to be informative and you've only tried to insult me and be snide while having the loosest grasp on the subject matter.
You keep throwing out specifications without understanding their real life installation use cases and then go as far as to make claims like "EG4 support is bad for DIY'r" which is so far from the truth it's hard to take anything you say seriously. There are hundreds of thousands of forums and YouTube videos from DIY who rave about EG4. In fact Sol-ark has a sketchy support track record (source - several installers I work with)
> The original comment is all within your framework of 3 Powerwalls vs one EG4 18K with 3 batteries. That's 12kw AC for the EG4, and 34.5kw on 3 Powerwalls.
And for the last time, you do not need 34.5kW continuous AC output for a house that is averaging 2 kW per hour per day. Yes, they have two EVs, but also these do not need to charge at their full potential if you plug them in every night. The author isn't generating enough energy from solar of their battery bank so it's pulling from the grid anyway for those loads, so a grid bypass (which EG4 supports up to 200A) means you don't need the inverter to pump out 34.5 kW to loads anyway.
The thing you keep glossing over is that the fundamental problem with a powerwall for scaling systems is that each battery bank you purchase requires you to purchase a built in inverter. The same nearly identical system from EG4 is an 18k + 15 kWh battery which costs $8k, and powerwalls cost $12k+. Thats a 50% premium to get you 185 LRA but 8 kWh less capacity. For an extra $250 you get an AC soft start and a 185 LRA is completed unnecessary and irrelevant.
> Yes, 48 amps at 240 is 11.5kw.
You keep saying these things like I don't understand the math.
> You don't know how to use an amp clamp and don't understand the American split phase power grid.
Lol. And you don't even understand that specifications ratings because they very explicitly say the amps at VAC ratings (120/240) because while it's entirely possible to reach the full potential of wattage... in real life, it's unlikely you will due to how split phase works with inverters. Inverters are rated by amps per leg because your loads on one 120v leg could be higher than the other one (unless all of your loads are 240v in which you would always be using the same amps on both legs).
So to conclude:
1. An identical system is $53k (Powerwall) versus $31k (EG4), which is still hilariously overpriced.
The only measurable differences are:
EG4 gets 6 more continuous AC amps (up to 1.44 kW more)
Powerwall gets much higher surge capacity (555A vs 195A)
EG4 gets 8 kWh more capacity
2. If you need more than 195A surge, you put a soft start in or just let the inverter bypass temporarily to grid.
3. You would never size this system with 3 inverters for someone averaging 48 kWh/day, so the author spent £7k on an additional battery and got an unnecessary inverter purchase which is now directly eating into his ROI.
>You keep throwing out specifications...
>And for the last time...
Well, neither of these are relevant to my original comment. I never commented on the value prop of the original install, only that your comparison in pricing is just not accurate as one is much more capable. Yes, lots of people want 34kw of standing load, because they want to ensure the offset of their HVAC unit. Generally people getting these systems have ridiculous homes, I've worked on a home with 3 20kw diesel generators. I've worked on a home with a seperate 200 amp service just for their pool side projector TV. Just because someone's wants aren't reasonable doesn't mean they don't want it.
>There are hundreds of thousands of forums and YouTube videos from DIY who rave about EG4.
EG4 sucks to try to pry anything out of. I don't actually like Sol-Ark that much either, but they're better to deal with and a better deal. Best deal is just to get an SRNE or similar straight from the source. Again, I paid $800 for my SRNE. I could get a second and parallel it and be outperforming the EG4 for a $3,400 discount. Youtubers are youtubers, not a source of truth. All those same youtubers shill battle born, too...
>Lol. And you don't even understand that specifications ratings because they very explicitly say the amps...
I'm not the one that has conflated two 50 amp phases with a 100 amp service. That's a 50 amp service. 12kw is 12kw. I keep repeating the math because you clearly keep misunderstanding it. A small electric range is typically on a 240 50 amp circuit, incredibly common in most households, and that's a small one.
>Identical system.
How is this identical? $5K for all other labor and materials? How much you paying per foot for the Class K to parallel the batteries? What's the homerun distance on the PV? Your AHJ require metal conduit on the DC runs inside the attic? Shit, if they require a 3R lockable lever disco that's $900 right there before fuses. What you penetrating with? What racking system you using? Shingle or metal roof? If shingle you doing the labor to pull shingles and put in flashing or you hacking it up with some HUGS/RT Minis? What's your max span between mounts given the wind load? S-5!s and HUGs add up fast when you can't get away with a large span. What's your interlock method? If you're landing in the MSP are you derating the mainbreaker? You value your time so little after all that material that you're still under $5k?
Edit: Also, you're gonna be paying a whole lot for LTL on that partial pallet of panels and 14' (if you get the short stuff) racking.
> Yes, lots of people want 34kw of standing load, because they want to ensure the offset of their HVAC unit.
The author of the post lives in the UK and averages 2kW load, a 4 kW PV system, and 45 kWh battery system. It's literally impossible for them to run a standing load of 34 kW for more than 1.5hrs without a grid tie. Why do you keep ignoring this?
There's literally thousands of e-bikes with touch screens and it would be unsafe for a bike of this weight to have anything other than hydraulic disc brakes, which are the standard for just about anything that isn't a road bike these days. Locator also pretty common even on $1,000 ebikes.
But yes, other stuff seems to be features for the sake of features.
A touchscreen on a primarily-outdoor device makes no sense to me. It's just a single point of failure for fanciness. Transit safety should be taken more seriously, with controls you can operate by feel, rather than vision. It's not important if lots and lots of companies include this single point of failure.
Edit: also, don't capacitive screens kinda suck if they get a little wet? like what, you just can't use the screen controls while it's raining without risking unlocking your seat 40,000 times in a half second due to a stray raindrop sitting on the screen? Feels like resistive would explicitly be superior here. You probably don't need huge accuracy for what should ideally be a spacious display anyways.
E-bikes with properly adjusted mechanical disc brakes are perfectly safe, and mechanical brakes are easy to adjust yourself without the need to take them to a bike shop. It's the discs that are important -- not whether they are mechanical or hydraulic.
If you put miles on your bike and ride hills, you'll spend way more time fiddling with an allen/torx on the inboard pad or the adjustment barrel on the cable as your pads wear. The bleeding procedure for hydraulics is for sure messier, but still very doable in 5 minutes. When you do have air in the system, pumping the lever a bit gives you back some braking function.
I have a 100w solar panel on top of my car...to tend a 12v battery. It's got a Dewalt battery charger, mikrotik ltap, and raspberry pi hooked up to it. Little hotspot with multiple sims and resource server(mainly just for fun). Anyone that can do basic math should immediately realize there's just not enough area to make an appreciable difference in regards to mileage.
The Prius Prime solar panel roof I think can net 3-6 miles a day under ideal conditions (which we're probably close to here in Arizona). I think that's a little more than people would expect, but still only applicable in niche conditions (tiny daily commute, or a longer non-daily commute). I think the math works out to ~4-6 years to break even for the cost of adding the solar roof assuming $0.15 per kwh, which isn't terrible.
If solar tech gets more efficient or cheaper, I think it starts becoming a much more attractive option in some areas. If you get into the 10+ miles per day range, that would cover a lot of peoples commutes in certain areas.
13.6 kWh battery. 39mile EPA range. Equals 2.87 miles of range per kWh. Leaving it out for 8 hours straight, on a sunny day, in LA, netted 915 Wh. Or, 2.86 miles. [0] Not 3-6, 2.86.
2.86 miles of charge, but only if left outside, uncovered, in full sun, on a fully sunny day, for a full 8 hours, in a place that gets effectively the maximum amount of solar radiation per day out of anywhere in the entire country.
Now, do the same experiment anywhere else in the country, that doesn't get max solar radiation, or that can't get full sunlight for full 8 hours, or where it's cloudy at all, or rainy at all.
2.86 miles per day is the practical MAXIMUM, given perfect conditions. For the average scenario it'd be some fraction of that.
The 6 miles figure is what they said you'd get if, in addition to perfect conditions, "if the sun shifted its orbit" (?) and gave perfect sunlight for 12 hours straight. Which is a number which should obviously not be thrown around as if it's obtainable.
The fact that they're quoting numbers about what range you'd get if the solar system was constructed differently also makes me doubt the impartiality of their experiment and the numbers they provided.
> 2.86 miles per day is the practical MAXIMUM, given perfect conditions
In your particular setup.
A typical car can expose about 3 square meters of lateral area for those same 8 hours, and receive 3 kW of irradiance. multijunction cells can exceed 50% efficiency, so we're talking about a theoretical upper limit of 12 kWh electric per day.
That would require a vehicle totally covered in cells, including the windows, so not very practical, but adding up to 30 miles/50 km per day
is nothing to sneeze at.
We could also imagine all sorts of solar receivers that engage during parking and inflate the apparent surface within the limits available, track the sun etc. to maximize energy.
The maximum demonstrated efficiency of a multijunction cell, in a lab, WITH CONCENTRATION is less than 50%. Commercially available cells are lower.
Concentration is an important caveat for two reasons:
First, it implies that you are collecting light from a larger area than the PV panel itself. Second, efficiency grows with increased irradiance (so efficiency will be lower without concentration).
> 3 square meters of lateral area
Lateral area is meaningless. It’s all about area perpendicular to the solar axis. Unless you are driving a box van or a big pickup truck, there is zero probability that you can put 3 kW of irradiance on your panels. Neither of those vehicles will achieve kWh/mile numbers anywhere close to a Prius.
In practice, you need to halve the efficiency and more than halve the collection area you quoted. You also need to account for conversion losses.
This is a theoretical exploration of the hard limits, not an engineering design.
The multijunction theoretical efficiency limit is 87% with infinite junctions, and over 50% with a practical number of junctions. There's nothing stopping you from creating a miniatural concentrating solar device that focuses the light from a 10 cm^2 area onto a 0.5cm^2 cell, we haven't seen such devices because the cost and extra mass exceed what you get from the efficiency gains when you can simply increase area; a very area constrained application with high power requirements might change that.
> It’s all about area perpendicular to the solar axis. Unless you are driving a box van or a big pickup truck
Again, what stops the top hood and engine cover of a Prius from raising at an angle and tracking the sun, perhaps even unfurl additional area? what about the area of the doors and windows?
Current solar cars can drive 1000 km per day with an average speed approaching 100km/h. It doesn't seem completely out of the realm of the possible to achieve 50km in an hour for a passenger car that can expose similar area while parked.
> This is a theoretical exploration of the hard limits, not an engineering design
You replied to (and even quoted) a comment explaining the practical limits, then doubled-down and said multi junction cells can exceed a number which has never been experimentally demonstrated.
And here you are again saying that multifunction cells can achieve 87% efficiency.
An ICE engine can achieve 100% thermal efficiency with the right Th and Tc. That has about as much relevance to the discussion at hand as 87% efficient solar panels.
Let me be clear: the most efficient cells that have ever been experimentally demonstrated under any conditions are less efficient than the number you originally stated. In real world conditions the number is half of what you originally.
> Again, what stops the top hood and engine cover of a Prius from raising at an angle and tracking the
EPA range tends to be pessimistic for EVs as it assumes you are always traveling at highway speeds. Even small reductions in speeds can make EVs much more efficient since drag is quadratic. A quick google search shows Prius prime owners reporting 4-5.5 miles/kwh, so the 3-6 mile range is entirely plausible.
> EPA range tends to be pessimistic for EVs as it assumes you are always traveling at highway speeds.
EV EPA range historically has been overstated. However, the water is muddied because the EPA doesn't really force the manufacturers to give an accurate number. A manufacturer can choose a highway only test, but then also arbitrarily decide to derate the value (EPA example is 70%). A manufacturer can choose to include city driving in the rating and weigh it accordingly and also derate the value (if they want).
Tesla traditionally (still the vast majority of new and used EV market share) has been the only manufacturer that uses the highway + city driving tests. People then get surprised when the car cannot do the full range at 85 MPH.
All in all, this is the EPAs fault. For EVs they really need two numbers, city driving range and highway driving range. EVs are so much more efficient than ICE that speed makes a huge difference given there substantially smaller energy density.
Everyone is also glossing over the distinction that regardless of the actual amount, it's not at an actual voltage that can charge the battery to add mileage. You can hypothetically say that because it's offsetting the power usage from the AC that it could theoretically be saving that battery usage...but there's so many gross assumptions being made that it's a pointless statement to make, and it's all out the window the second the car starts the ICE side of the hybrid drive system for even an instant.
> Everyone is also glossing over the distinction that regardless of the actual amount, it's not at an actual voltage that can charge the battery to add mileage.
Neither is the voltage when you plug it in at home. The car has a unit specifically to convert the voltage.
If you're saying they didn't connect the right wires for that, that sucks but is easily fixed.
> it's all out the window the second the car starts the ICE side of the hybrid drive system for even an instant
Nah, doing a drive where it's 99% solar power and 1% "burned an ounce of gas to maintain the engine for the month" is fine.
That article sure has 49 pictures, none of which show more than the very edge of the solar panel.
But looking at some proper pictures, it covers most of the midroof with 7x8 tiles of solar. But you could fit a good percentage, even sticking with a design where a huge amount of the roof into the trunk is all glass. And there are no panels on the hood. So that's an easy doubling right there, more with an average car roof shape.
If we're picking nits, the usable capacity is only 10.5 kWh (11.5 kWh with AC-to-DC losses), so it should be 3.40 miles. Not 2.86, or even 2.62 (= 39/13.6 * 0.915).
I wonder how much extra range you would get if one leaves the car in the shade so that it doesn't get super hot and there is no need to turn on the AC hard? I bet it's more than 2.86 miles.
I believe having a carport and house roof covered with solar panels + (PH)EV is the best option.
The initial use of solar on the Prius was to power a ventilation fan while the car was parked, and the current version seems to specifically be designed to provide power to the air conditioner while driving. But, I also can't imagine the difference between cooling down the cabin is much different from parking in the sun or in the shade - you'd be running it continually to achieve "room temperature" during the entire drive either way.
You can't imagine that air conditioning power draw varies with the heat load that it is working against? As a heat-pump, it takes more energy to move more energy.
In the old days, they used duty cycle to adapt to the changing load. Modern ones do things like varying compressor displacement or compressor speed to adapt to the load. Variable frequency inverters are used to efficiently drive electric compressors.
The variable displacement trick is used in ones mechanically linked to internal combustion engines. It can vary the compression stroke to account for different load as well as different engine speed.
Watching power draw on my Leaf with LeafSpy, the AC seems to use between 500-1000W (maybe more sometimes, but that's just off the top of my head from a few times running it while driving).
At the low end maybe achievable with a full rooftop covered in solar panels, but probably not adequate at 1kW+.
What kind of European cities are you talking about lol, no offence but I hate this generalisation of "European" anything as if Southern Spain has the same culture and architecture as Poland or Lithuania.
To my thinking, the best use of a solar panel on a car is running a low power AC unit all the time whenever the car is in the sun. Parking in the shade often isn't possible.
I don’t think you’d have to run the AC any more aggressively with the solar panels than with a traditional steel roof?
If you’re suggesting it wouldn’t work in a garage, that’s obviously true (and another factor in whether car solar makes sense) but many (most?) people park their cars outside during the day anyway. I for one can’t remember the last time I parked under cover
That's still 3-6 fewer miles worth of charging to do from more expensive sources. Even if it can't come close to covering your full use it's still covering something
It may still lose on this, but you would also want to include the externality costs that the consumer doesn't themselves bear for whether it is worth it overall.
There is going to be a parasitic drag loss to figure into it as well. I think the only way to accurately calculate that would be in a wind tunnel or maybe an amp meter with a before and after installation under identical conditions.
The Prius Prime solar roof is a $610 option available only on the top XSE trim level, so a hypothetical buyer is paying ~$7500 to access this effectively negligible amount of energy.
ETA: and the fact that this option is tied to the significantly less efficient 19" wheel package, instead of the standard 17" wheels, means that this will never, ever be a net benefit.
I just started doing this with my car, mostly to add a camera/temp monitoring for when I leave my dog in the kennel in the car (she's well watched over, please don't fret over it).
I'm hooking it up via starlink specifically so it works in remote areas with no cell coverage too.
Monitoring and proxying everything via an RPI as well. Victron DC-DC inverter to keep the bluetti battery pack charged with bluetooth relay boards so we can turn loads (camera/starlink/others) on/off programmatically (it only turns the starlink on when there's no good/known wifi for example).
Fun project, combines software dev (which I'm fairly good at) with hardware work (which I'm less) and my dogs (which I'm a big fan of).
The maths says that the *mean* number of miles driven by a vehicle is surprisingly low, and that tiling the surface of a car can get to about 80% of that *mean* in places where the car is just left out on the street and not shaded parking.
But!
That's a practical consideration at the level of "should a government require EV makers to design the roof, bonnet, doors etc. to be tiled in PV in order to reduce, but not eliminate, the induced extra demand on the grid" and definitely not "should I personally bolt a small, fixed, PV panel and inverter into my EV as an aftermarket DIY job?"
The former gets wind-tunnel tests for efficiency, QA, designed around all the other safety concerns cars have e.g. crash safety.
I know masks and ICP makeup were suggested as anti face recognition tools. Did anyone actually test pebble in the shoe? I would have thought clothing to hide the gait would be the answer, burkas or JNCO jeans.
That's the plan for every other federal service. For public land in particular there's an extra fun bonus step of selling the land to be exploited fully. Look at the Secretary of Interior's record in North Dakota.
Unless you plan on solely targeting entry level tea drinkers, you really need to provide more information about your tea. Give a preview of what you plan to ship for the next few months, the tea, the region it's from, when it was picked, etc. For all I know you're going to send me a box of Tazo loose leaf every month.
Sounds good. Sorry if that came off as harsh, I meant to expand on the 'you really need to' because there are similar services being offered by established tea retailers that do include all of that information, and such information is important to most tea-junkies. Even though I think it's clear that your service is aiming for a more frugal, less picky market than most of those, it's definitely better not to alienate them.
I wouldn't say that I am targeting a frugal, less picky market. I think those buyers just get a box of tea from their grocery store every week.
I plan on sending teas like the organic Long Jing Dragonwell tea. Depending on the number of subscribers that month, I'll likely take a loss on many of those teas since the tea and associated shipping costs may exceed the $24 monthly price.
I have to reach a certain threshold of monthly subscribers (with a fixed churn) to reach profitability.
The EG4 18k has 11.5 kw backfeed capability, with a rather pathetic 65ish amp in-rush. Obviously 18kw usable solar capacity(they technically let you land up to 21kw, but only 18 is usable).
The Powerwall system you outlined can take 60kw of usable solar input, has 34kw standing backfeed capability, and a whopping 555 amp in-rush (not a typo, it's 185 amps per unit).
Not to get in to warranties, etc.
reply